
Intelligent Text Input and Optimization

1



Learning Goals

▪ Combinatorial optimization as a UI design approach

▪ Probabilistic methods for handling input 

▪ Application example: keyboards

Intelligent Text Entry Daniel Buschek2



Optimizing User Interfaces
Example: keyboard layout optimization

Intelligent Text Entry 3



Motivation: Fast typing without errors

▪ Are some layouts better than others?
▪ If so, how do we find the best one?

Intelligent Text Entry Daniel Buschek4

By: https://commons.wikimedia.org/wiki/File:KB_United_States.svg, https://commons.wikimedia.org/wiki/File:KB_United_States_Dvorak.svg

QWERTY, by Christopher Sholes, 1873 Dvorak, by August Dvorak, 1936 

https://commons.wikimedia.org/wiki/File:KB_United_States.svg
https://commons.wikimedia.org/wiki/File:KB_United_States_Dvorak.svg


Key Assignment Problem

Intelligent Text Entry Daniel Buschek5

?

How many layouts are there? 26! = 4 * 1026

…

For comparison - stars in the universe: https://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe



Examples of Optimised Designs

Intelligent Text Entry Daniel Buschek6

Zhai et al. 2000, Dunlop and Levine 2012, Oulasvirta et al. 2013, Gong et al. 2018



What is „optimal“?

▪ Design space: 
Best among which options?

▪ Design objective:
Best for what?

▪ Optimizer:
How to find the best design?
Best with which guarantees?

Intelligent Text Entry Daniel Buschek7



Design Space, formalised

Intelligent Text Entry Daniel Buschek8

Design space D
with n design variables



Design Space: Set of possible layouts

Intelligent Text Entry Daniel Buschek9

26! = 4 * 1026?



Objective Function: How to judge a layout?

Intelligent Text Entry Daniel Buschek10



Objective Function: How to judge a layout?

Intelligent Text Entry

▪ Finger movement time 
(e.g. Fitts‘ law)

▪ Language properties
(e.g. bigram frequencies)

Daniel Buschek11

e.g.

▪ Combined: mean time between two key presses

k1

k2



Optimizer: How to pick layouts?

Intelligent Text Entry Daniel Buschek12



Design Task
e.g. keyboard layout optimization

Intelligent Text Entry Daniel Buschek13



A Simple Optimizer

▪ Can you think of a trivial optimizer?

▪ Random Search:
1. Generate random design
2. Keep if better than current best design
3. Repeat

Intelligent Text Entry Daniel Buschek14



Optimization Landscape
Here: objective function (y) across two design parameters (x, z)

Intelligent Text Entry Daniel Buschek15

global minimum

local maximumglobal maximum

y

x

z



Random Guessing

Intelligent Text Entry Daniel Buschek16



Optimizers

▪ Heuristic methods (e.g. Simulated Annealing)
+ Flexible
- Not guaranteed to find global optimum

▪ Exact methods (e.g. Integer Programming)
+ Guarantees
- Less flexible objectives

Intelligent Text Entry Daniel Buschek17



Example: Simulated Annealing

▪ Metaphor: shaping hot metal
▪ Flexible at beginning 

(exploration)
▪ Gradually more rigid as it 

“cools down” (exploitation)

Intelligent Text Entry Daniel Buschek18

For i=0 to N:
reduce temperature T
generate neighbor design
if better: go to neighbor
else: still go with chance relative to T

Photo by Kateryna Babaieva

https://www.pexels.com/de-de/@kateryna-babaieva-1423213?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels


Simulated Annealing

Intelligent Text Entry Daniel Buschek19



Example Results

Intelligent Text Entry Daniel Buschek20

“boxpum”
found with random search

“aero”
found with Simulated Annealing

Challenge – can you find a better layout than “aero”?
Use the provided python notebook as a starting point.



Example Results
With a modified objective function

Intelligent Text Entry Daniel Buschek21

“chat”
found with Simulated Annealing

What was this layout 
optimized for?

à Typing with right thumb, 
reduce thumb stretching



Potential of Optimization-based Design

▪ Obtaining information on the design problem and a formal 
specification

▪ Exploring a large design space comprehensively
▪ Improving quality and robustness of designs
▪ Estimating possible improvements
▪ Supporting human designers 
▪ Optimization during use, personalised UIs

▪ Requires: Models of user behaviour, formal problem 
definition / objective function, computational capacity, …

Intelligent Text Entry Daniel Buschek22



Adaptive and Predictive Keyboards

23



Motivation: Fast typing without errors

▪ „Inviscid entry rate“:
Bottleneck is not the 
text entry UI but coming 
up with the text

▪ Estimated as 67 WPM

Here: mobile devices

Intelligent Text Entry Daniel Buschek24

[Kristensson and Vertanen 2014]

à Try to reach this on 
your phone without errors, 
e.g. in an online typing 
speed test.



Challenges for Mobile Typing
Why is it inaccurate?

Intelligent Text Entry Daniel Buschek25

Parallax
eye – finger - screen

[Holz and Baudisch 2011]

Mobile use
1-2 fingers, small keys, body movement

Photo by Ketut Subiyanto

https://www.pexels.com/de-de/@ketut-subiyanto?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels


Variance in Touchscreen Keypresses
Spread of x,y touch locations around key centres

Intelligent Text Entry Daniel Buschek26

[Goodman et al. 2002]

[Azenkot and Zhai 2012]

PDA

Smartphone

https://www.microsoft.com/en-us/swiftkey



Individual Typing Behaviour

Intelligent Text Entry Daniel Buschek27

[Buschek et al. 2018][Findlater and Wobbrock 2012]

Tabletop Smartphone



Adapting Keyboards to Typists
Overview

Intelligent Text Entry Daniel Buschek28

Visible keyboard Collect touches Adapt underlying 
key regions

U
se

r A
U

se
r B



Modelling Touchscreen Keypresses
From x,y touch points to one Gaussian per key

Intelligent Text Entry Daniel Buschek29

[Azenkot and Zhai 2012]

Gaussian key model:
(shown in 1D here)

touch location t

likelihood



Probabilistic Keyboard Model
Which key does the user intend to press? i.e. „input decoding“

Intelligent Text Entry Daniel Buschek30

predicted 
keypress

Gaussian 
key model

Language 
model

}

Bayes‘ rule
=

[Yin et al. 2013]Evaluate and colour k‘ for each pixel

e.g. based on 
last five characters:



DIY: Probabilistic Keyboard Model

Intelligent Text Entry Daniel Buschek31

touchX = ... // touch X coordinate
touchY = ... // touch Y coordinate
num_keys = ... // number of keys on keyboard

means = [...] // list of all key means (2D key locations)
variances = [...] // list of key variances (real values) or covariances (2x2 matrices)

probs = [] // list to store the likelihoods of each key being pressed

sum = 0 // variable to store sum of likelihoods for normalisation (see below)

for k = 0 to num_keys: // iterate over all keys
// evaluate touch location under distribution of the key*:

prob_t_given_k = multinormal_pdf(touchX, touchY, means[k], variances[k])
// likelihood of key without touch info; uniform (here), or based on language*:
prob_k = 1/num_keys
// store product and add it to the sum of all likelihoods*:

probs[k] = prob_t_given_k * prob_k
sum = sum + probs[k]

// normalise, so that the likelihoods add up to 1*:
probs = probs / sum //note: “/” is element-wise division

// find most likely key:
pressed_key_index = argmax(probs)
// TODO for adaptation: update means and variances with new touchX and touchY

* in real implementation use logarithm and corresponding operations for numerical stability



Language Model Influence
Example: bigram model for English

Intelligent Text Entry Daniel Buschek32

After „n“: After „t“:



Adaptation in the Background

Intelligent Text Entry Daniel Buschek33

Why do our keyboards 
not look like this? 

[Yin et al. 2013]

à Avoid co-adaptation
of user and system

Keyboard visuals
change touch behaviour

Touch behaviour 
changes keyboard



Adaptation vs Distortion

Intelligent Text Entry Daniel Buschek34

[Gunawardana et al. 2010]

Unlimited adaptation With protected key region

Here: (almost) impossible to type „e“!



Context Adaptations
e.g. hand posture – „ContextType“, Goel et al. 2013

Intelligent Text Entry Daniel Buschek35

Left thumb Right thumb

Index finger Two thumbs

[Goel et al. 2013]



Context Adaptations
e.g. walking – „WalkType“, Goel et al. 2012

Intelligent Text Entry Daniel Buschek36

[Goel et al. 2012]



Notebook Example
Visualising adaptive keyboards

37



Decoding Typing Sequences

▪ Infer intended input after entering whole word or sentence
+ More evidence for inference
+ No need for user to pay attention to intermediate output
- No intermediate feedback

▪ Example (sentence-based decoding):

Intelligent Text Entry Daniel Buschek38

[Vertanen et al. 2015]

„pleaseforwarxmetheatachement“

„Please forward me the attachement.“

Hit enter



Sequence Decoding, formally

Intelligent Text Entry Daniel Buschek39

▪ Sequence of user‘s 
intended keys/letters 
(i.e. unknown to system)

▪ Sequence of user‘s touches 
(i.e. system‘s observations)

▪ Can we infer s from o ? 

Note: Same approach as for a 
single touch but now we have 
sequences of touches and keys



Probabilistic Model for Sequences
See notebook for an example implementation

Intelligent Text Entry Daniel Buschek40

Prior over letter sequences,
i.e. probability of s in a language, 
i.e. a language model

Gaussian key model, now for a touch sequence
(i.e. likelihood of observing the touch sequence o under the assumption that 
the user intended to write s)

…



Decoding Typing Sequences
Token passing algorithm

Intelligent Text Entry Daniel Buschek41

Token
Hyp: „“
p: 1.0
Index: 0

Token
Hyp: „a“
p: 0.082
Index: 1

Token
Hyp: „b“
p: 0.015
Index: 1

Keyboard, 
typing touches

Token
Hyp: „a“
p: 0.082
Index: 1

Token
Hyp: „b“
p: 0.015
Index: 1

Token
Hyp: „aa“
p: 0.002
Index: 2

Token
Hyp: „ba“
p: 0.0001
Index: 2

Token
Hyp: „ab“
p: 0.009
Index: 2

Token
Hyp: „bb“
p: 0.004
Index: 2

Token
Hyp: „aa“
p: 0.002
Index: 2

Token
Hyp: „ba“
p: 0.0001
Index: 2

Token
Hyp: „ab“
p: 0.009
Index: 2

Token
Hyp: „bb“
p: 0.004
Index: 2



Decoding Typing Sequences

▪ Previous slide: Substitution-only decoder
▪ Extensions: insertion and deletion transitions,

with „penalty“

With insertion and deletion

Intelligent Text Entry Daniel Buschek42



Decoding Typing Sequences

▪ Problem: Large search space
Substitution-only à exponential, Insertion à infinite

▪ Solution: Beam search / pruning
Per index, only propagate tokens that are within a certain range
(=„beam width“) of the probability of the most likely token.

With beam search / pruning

Intelligent Text Entry Daniel Buschek43

e.g. beam width = 0.005,
i.e. here exclude p < 0.009-0.005=0.004



Gesture-based Decoding
Infer intended word from shape of finger trace on the keyboard

Intelligent Text Entry Daniel Buschek44

„SHARK2“ [Kristensson and Zhai 2004]

Microsoft SwiftKey (screenshot Nov 2020)



Gesture-based Decoding

Intelligent Text Entry Daniel Buschek45

Language modelShape model

Stored template (ideal) shapes
for all words in dictionary W

User‘s touch trace

Distance 
metric

…

e.g. see 
Kristensson and Zhai,

2004



Word Prediction

▪ So far: Inference used touch input
▪ Now: Predict next word that user 

has not yet started to type,
only using language context

▪ E.g. n-gram word models, i.e. 
context of last n-1 words

▪ More recently: Deep Learning 
to include larger context

Intelligent Text Entry Daniel Buschek46



Summary

▪ Improving keyboards by probabilistically combining 
input information with language information

▪ Adaptation:
▪ Individual input behaviour à adaptation to typist
▪ Further sensors à adaptation to context

▪ Prediction/Decoding:
▪ Single touch + language context à current key
▪ Touch sequences + language context à current word/sentence
▪ Language only à next word(s)

Intelligent Text Entry Daniel Buschek47



Notebook Example 2
Sequence decoding

48



References (Part 1)
▪ Kristensson, P. O., & Vertanen, K. (2014). The inviscid text entry rate and its application as a grand goal for 

mobile text entry. Proceedings of the 16th international conference on Human-computer interaction with mobile 
devices & services, 335–338. https://doi.org/10.1145/2628363.2628405

▪ Kristensson, P.-O., & Zhai, S. (2004). SHARK2: A large vocabulary shorthand writing system for pen-based 
computers. Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology -
UIST ’04, 43. https://doi.org/10.1145/1029632.1029640

▪ Vertanen, K., Memmi, H., Emge, J., Reyal, S., & Kristensson, P. O. (2015). VelociTap: Investigating Fast 
Mobile Text Entry using Sentence-Based Decoding of Touchscreen Keyboard Input. Proceedings of the 33rd 
Annual ACM Conference on Human Factors in Computing Systems, 659–668. 
https://doi.org/10.1145/2702123.2702135

▪ Yin, Y., Ouyang, T. Y., Partridge, K., & Zhai, S. (2013). Making touchscreen keyboards adaptive to keys, hand 
postures, and individuals: A hierarchical spatial backoff model approach. Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, 2775–2784. https://doi.org/10.1145/2470654.2481384

Further Reading:
▪ Bi, X., Li, Y., & Zhai, S. (2013). FFitts law: Modeling finger touch with fitts’ law. Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems, 1363–1372. https://doi.org/10.1145/2470654.2466180

▪ Oulasvirta, A., Kristensson, P. O., Bi, X., & Howes, A. (Hrsg.). (2018). Computational Interaction. Oxford 
University Press.

Daniel Buschek49Intelligent Text Entry

https://doi.org/10.1145/2628363.2628405
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2470654.2481384
https://doi.org/10.1145/2470654.2466180


References (Part 2)
▪ Azenkot, S., & Zhai, S. (2012). Touch behavior with different postures on soft smartphone keyboards. 

Proceedings of the 14th international conference on Human-computer interaction with mobile devices and 
services, 251–260. https://doi.org/10.1145/2371574.2371612

▪ Buschek, D., Bisinger, B., & Alt, F. (2018). ResearchIME: A Mobile Keyboard Application for Studying Free 
Typing Behaviour in the Wild. Proceedings of the 2018 CHI Conference on Human Factors in Computing 
Systems, 1–14. https://doi.org/10.1145/3173574.3173829

▪ Findlater, L., & Wobbrock, J. (2012). Personalized input: Improving ten-finger touchscreen typing through 
automatic adaptation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 815–
824. https://doi.org/10.1145/2207676.2208520

▪ Goel, M., Findlater, L., & Wobbrock, J. (2012). WalkType: Using accelerometer data to accomodate situational 
impairments in mobile touch screen text entry. Proceedings of the 2012 ACM Annual Conference on Human 
Factors in Computing Systems - CHI ’12, 2687. https://doi.org/10.1145/2207676.2208662

▪ Goel, M., Jansen, A., Mandel, T., Patel, S. N., & Wobbrock, J. O. (2013). ContextType: Using Hand Posture 
Information to Improve Mobile Touch Screen Text Entry. Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, 2795–2798. https://doi.org/10.1145/2470654.2481386

▪ Goodman, J., Venolia, G., Steury, K., & Parker, C. (2002). Language modeling for soft keyboards. Proceedings 
of the 7th international conference on Intelligent user interfaces, 194–195. 
https://doi.org/10.1145/502716.502753

▪ Gunawardana, A., Paek, T., & Meek, C. (2010). Usability guided key-target resizing for soft keyboards. 
Proceedings of the 15th international conference on Intelligent user interfaces - IUI ’10, 111. 
https://doi.org/10.1145/1719970.1719986

▪ Holz, C., & Baudisch, P. (2011). Understanding touch. Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, 2501–2510. https://doi.org/10.1145/1978942.1979308

Daniel Buschek50Intelligent Text Entry

https://doi.org/10.1145/2371574.2371612
https://doi.org/10.1145/3173574.3173829
https://doi.org/10.1145/2207676.2208520
https://doi.org/10.1145/2207676.2208662
https://doi.org/10.1145/2470654.2481386
https://doi.org/10.1145/502716.502753
https://doi.org/10.1145/1719970.1719986
https://doi.org/10.1145/1978942.1979308


References (Part 2, cont.)
▪ Dunlop, M., & Levine, J. (2012). Multidimensional pareto optimization of touchscreen keyboards for speed, 

familiarity and improved spell checking. Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems, 2669–2678. https://doi.org/10.1145/2207676.2208659

▪ Gong, J., Xu, Z., Guo, Q., Seyed, T., Chen, X. „Anthony“, Bi, X., & Yang, X.-D. (2018). WrisText: One-handed 
Text Entry on Smartwatch using Wrist Gestures. Proceedings of the 2018 CHI Conference on Human Factors 
in Computing Systems - CHI ’18, 1–14. https://doi.org/10.1145/3173574.3173755

▪ Oulasvirta, A., Reichel, A., Li, W., Zhang, Y., Bachynskyi, M., Vertanen, K., & Kristensson, P. O. (2013). 
Improving two-thumb text entry on touchscreen devices. Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, 2765–2774. https://doi.org/10.1145/2470654.2481383

▪ Zhai, S., Hunter, M., & Smith, B. A. (2000). The metropolis keyboard—An exploration of quantitative techniques 
for virtual keyboard design. Proceedings of the 13th Annual ACM Symposium on User Interface Software and 
Technology - UIST ’00, 119–128. https://doi.org/10.1145/354401.354424

Further Reading:
▪ Oulasvirta, A., Dayama, N. R., Shiripour, M., John, M., & Karrenbauer, A. (2020). Combinatorial Optimization of 

Graphical User Interface Designs. Proceedings of the IEEE, 108(3), 434–464. 
https://doi.org/10.1109/JPROC.2020.2969687

▪ Simon, H. A. (1969). The sciences of the artificial. The MIT Press.

Daniel Buschek51Intelligent Text Entry

https://doi.org/10.1145/2207676.2208659
https://doi.org/10.1145/3173574.3173755
https://doi.org/10.1145/2470654.2481383
https://doi.org/10.1145/354401.354424
https://doi.org/10.1109/JPROC.2020.2969687


License

Daniel Buschek

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 (CC BY-SA) 

license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Daniel Buschek

For more content see: https://iui-lecture.org

52


