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Learning Goals

▪ Combinatorial optimization as a UI design approach

▪ Probabilistic methods for handling input 

▪ Application example: keyboards
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Optimizing User Interfaces
Example: keyboard layout optimization
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Motivation: Fast typing without errors

▪ Are some layouts better than others?
▪ If so, how do we find the best one?
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By: https://commons.wikimedia.org/wiki/File:KB_United_States.svg, https://commons.wikimedia.org/wiki/File:KB_United_States_Dvorak.svg

QWERTY, by Christopher Sholes, 1873 Dvorak, by August Dvorak, 1936 

https://commons.wikimedia.org/wiki/File:KB_United_States.svg
https://commons.wikimedia.org/wiki/File:KB_United_States_Dvorak.svg


Key Assignment Problem
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?

How many layouts are there? 26! = 4 * 1026

…

For comparison - stars in the universe: https://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe



Examples of Optimised Designs
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Zhai et al. 2000, Dunlop and Levine 2012, Oulasvirta et al. 2013, Gong et al. 2018



What is „optimal“?

▪ Design space: 
Best among which options?

▪ Design objective:
Best for what?

▪ Optimizer:
How to find the best design?
Best with which guarantees?
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Design Space, formalised
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Design space D
with n design variables



Design Space: Set of possible layouts
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26! = 4 * 1026?



Objective Function: How to judge a layout?
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Objective Function: How to judge a layout?

Intelligent Text Entry

▪ Finger movement time 
(e.g. Fitts‘ law)

▪ Language properties
(e.g. bigram frequencies)
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e.g.

▪ Combined: mean time between two key presses

k1

k2



Optimizer: How to pick layouts?
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Design Task
e.g. keyboard layout optimization
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A Simple Optimizer

▪ Can you think of a trivial optimizer?

▪ Random Search:
1. Generate random design
2. Keep if better than current best design
3. Repeat
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Optimization Landscape
Here: objective function (y) across two design parameters (x, z)
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global minimum

local maximumglobal maximum

y

x

z



Random Guessing
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Optimizers

▪ Heuristic methods (e.g. Simulated Annealing)
+ Flexible
- Not guaranteed to find global optimum

▪ Exact methods (e.g. Integer Programming)
+ Guarantees
- Less flexible objectives
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Example: Simulated Annealing

▪ Metaphor: shaping hot metal
▪ Flexible at beginning 

(exploration)
▪ Gradually more rigid as it 

“cools down” (exploitation)
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For i=0 to N:
reduce temperature T
generate neighbor design
if better: go to neighbor
else: still go with chance relative to T

Photo by Kateryna Babaieva

https://www.pexels.com/de-de/@kateryna-babaieva-1423213?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels


Simulated Annealing
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Example Results
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“boxpum”
found with random search

“aero”
found with Simulated Annealing

Challenge – can you find a better layout than “aero”?
Use the provided python notebook as a starting point.



Example Results
With a modified objective function

Intelligent Text Entry Daniel Buschek21

“chat”
found with Simulated Annealing

What was this layout 
optimized for?

à Typing with right thumb, 
reduce thumb stretching



Potential of Optimization-based Design

▪ Obtaining information on the design problem and a formal 
specification

▪ Exploring a large design space comprehensively
▪ Improving quality and robustness of designs
▪ Estimating possible improvements
▪ Supporting human designers 
▪ Optimization during use, personalised UIs

▪ Requires: Models of user behaviour, formal problem 
definition / objective function, computational capacity, …
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Adaptive and Predictive Keyboards
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Motivation: Fast typing without errors

▪ „Inviscid entry rate“:
Bottleneck is not the 
text entry UI but coming 
up with the text

▪ Estimated as 67 WPM

Here: mobile devices
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[Kristensson and Vertanen 2014]

à Try to reach this on 
your phone without errors, 
e.g. in an online typing 
speed test.



Challenges for Mobile Typing
Why is it inaccurate?
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Parallax
eye – finger - screen

[Holz and Baudisch 2011]

Mobile use
1-2 fingers, small keys, body movement

Photo by Ketut Subiyanto

https://www.pexels.com/de-de/@ketut-subiyanto?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels


Variance in Touchscreen Keypresses
Spread of x,y touch locations around key centres
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[Goodman et al. 2002]

[Azenkot and Zhai 2012]

PDA

Smartphone

https://www.microsoft.com/en-us/swiftkey



Individual Typing Behaviour
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[Buschek et al. 2018][Findlater and Wobbrock 2012]

Tabletop Smartphone



Adapting Keyboards to Typists
Overview
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Visible keyboard Collect touches Adapt underlying 
key regions

U
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Modelling Touchscreen Keypresses
From x,y touch points to one Gaussian per key
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[Azenkot and Zhai 2012]

Gaussian key model:
(shown in 1D here)

touch location t

likelihood



Probabilistic Keyboard Model
Which key does the user intend to press? i.e. „input decoding“
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predicted 
keypress

Gaussian 
key model

Language 
model

}

Bayes‘ rule
=

[Yin et al. 2013]Evaluate and colour k‘ for each pixel

e.g. based on 
last five characters:



DIY: Probabilistic Keyboard Model
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touchX = ... // touch X coordinate
touchY = ... // touch Y coordinate
num_keys = ... // number of keys on keyboard

means = [...] // list of all key means (2D key locations)
variances = [...] // list of key variances (real values) or covariances (2x2 matrices)

probs = [] // list to store the likelihoods of each key being pressed

sum = 0 // variable to store sum of likelihoods for normalisation (see below)

for k = 0 to num_keys: // iterate over all keys
// evaluate touch location under distribution of the key*:

prob_t_given_k = multinormal_pdf(touchX, touchY, means[k], variances[k])
// likelihood of key without touch info; uniform (here), or based on language*:
prob_k = 1/num_keys
// store product and add it to the sum of all likelihoods*:

probs[k] = prob_t_given_k * prob_k
sum = sum + probs[k]

// normalise, so that the likelihoods add up to 1*:
probs = probs / sum //note: “/” is element-wise division

// find most likely key:
pressed_key_index = argmax(probs)
// TODO for adaptation: update means and variances with new touchX and touchY

* in real implementation use logarithm and corresponding operations for numerical stability



Language Model Influence
Example: bigram model for English
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After „n“: After „t“:



Adaptation in the Background
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Why do our keyboards 
not look like this? 

[Yin et al. 2013]

à Avoid co-adaptation
of user and system

Keyboard visuals
change touch behaviour

Touch behaviour 
changes keyboard



Adaptation vs Distortion
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[Gunawardana et al. 2010]

Unlimited adaptation With protected key region

Here: (almost) impossible to type „e“!



Context Adaptations
e.g. hand posture – „ContextType“, Goel et al. 2013
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Left thumb Right thumb

Index finger Two thumbs

[Goel et al. 2013]



Context Adaptations
e.g. walking – „WalkType“, Goel et al. 2012

Intelligent Text Entry Daniel Buschek36

[Goel et al. 2012]



Notebook Example
Visualising adaptive keyboards
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Decoding Typing Sequences

▪ Infer intended input after entering whole word or sentence
+ More evidence for inference
+ No need for user to pay attention to intermediate output
- No intermediate feedback

▪ Example (sentence-based decoding):
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[Vertanen et al. 2015]

„pleaseforwarxmetheatachement“

„Please forward me the attachement.“

Hit enter



Sequence Decoding, formally
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▪ Sequence of user‘s 
intended keys/letters 
(i.e. unknown to system)

▪ Sequence of user‘s touches 
(i.e. system‘s observations)

▪ Can we infer s from o ? 

Note: Same approach as for a 
single touch but now we have 
sequences of touches and keys



Probabilistic Model for Sequences
See notebook for an example implementation
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Prior over letter sequences,
i.e. probability of s in a language, 
i.e. a language model

Gaussian key model, now for a touch sequence
(i.e. likelihood of observing the touch sequence o under the assumption that 
the user intended to write s)

…



Decoding Typing Sequences
Token passing algorithm
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Token
Hyp: „“
p: 1.0
Index: 0

Token
Hyp: „a“
p: 0.082
Index: 1

Token
Hyp: „b“
p: 0.015
Index: 1

Keyboard, 
typing touches

Token
Hyp: „a“
p: 0.082
Index: 1

Token
Hyp: „b“
p: 0.015
Index: 1

Token
Hyp: „aa“
p: 0.002
Index: 2

Token
Hyp: „ba“
p: 0.0001
Index: 2

Token
Hyp: „ab“
p: 0.009
Index: 2

Token
Hyp: „bb“
p: 0.004
Index: 2

Token
Hyp: „aa“
p: 0.002
Index: 2

Token
Hyp: „ba“
p: 0.0001
Index: 2

Token
Hyp: „ab“
p: 0.009
Index: 2

Token
Hyp: „bb“
p: 0.004
Index: 2



Decoding Typing Sequences

▪ Previous slide: Substitution-only decoder
▪ Extensions: insertion and deletion transitions,

with „penalty“

With insertion and deletion
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Decoding Typing Sequences

▪ Problem: Large search space
Substitution-only à exponential, Insertion à infinite

▪ Solution: Beam search / pruning
Per index, only propagate tokens that are within a certain range
(=„beam width“) of the probability of the most likely token.

With beam search / pruning
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e.g. beam width = 0.005,
i.e. here exclude p < 0.009-0.005=0.004



Gesture-based Decoding
Infer intended word from shape of finger trace on the keyboard
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„SHARK2“ [Kristensson and Zhai 2004]

Microsoft SwiftKey (screenshot Nov 2020)



Gesture-based Decoding
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Language modelShape model

Stored template (ideal) shapes
for all words in dictionary W

User‘s touch trace

Distance 
metric

…

e.g. see 
Kristensson and Zhai,

2004



Word Prediction

▪ So far: Inference used touch input
▪ Now: Predict next word that user 

has not yet started to type,
only using language context

▪ E.g. n-gram word models, i.e. 
context of last n-1 words

▪ More recently: Deep Learning 
to include larger context
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Summary

▪ Improving keyboards by probabilistically combining 
input information with language information

▪ Adaptation:
▪ Individual input behaviour à adaptation to typist
▪ Further sensors à adaptation to context

▪ Prediction/Decoding:
▪ Single touch + language context à current key
▪ Touch sequences + language context à current word/sentence
▪ Language only à next word(s)

Intelligent Text Entry Daniel Buschek47



Notebook Example 2
Sequence decoding
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