

Adaptive and Predictive Keyboards

Learning Goals

- Challenges of mobile touch and typing
- Modelling typing behaviour
- Probabilistic methods for keyboard adaptation and input decoding

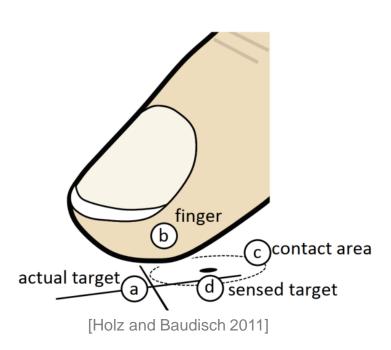
Motivation: Fast typing without errors

Here: mobile devices

- "Inviscid entry rate": Bottleneck is not the text entry UI but coming up with the text
- Estimated as 67 WPM

→ Try to reach this on your phone without errors,
e.g. in an online typing speed test.

Text entry method	Highest reported entry rate (wpm)
Estimate of the inviscid entry rate	67
Physical thumb keyboards	60 [3]
Gesture keyboards	45 [9]
Optimized on-screen keyboards	45 [12]
QWERTY on-screen keyboards	40 [12]
KALQ thumb keyboard	37 [14]
Half-QWERTY	35 [13]
Twiddler	35 [11]
WalkType	31 [5]
ContextType	28 [6]
Disambiguating keypads	26 [7]
Unconstrained handwriting recognition	25 [8]
Dasher	20 [21]
Mobile speech	18 [18]
Quikwriting	16 [15]
Unistrokes	16 [1]
TiltText	14 [22]
Multi-tap	12 [23]
Graffiti	11[1]
EdgeWrite	7 [24]


[Kristensson and Vertanen 2014]

Challenges for Mobile Typing

Why is it inaccurate?

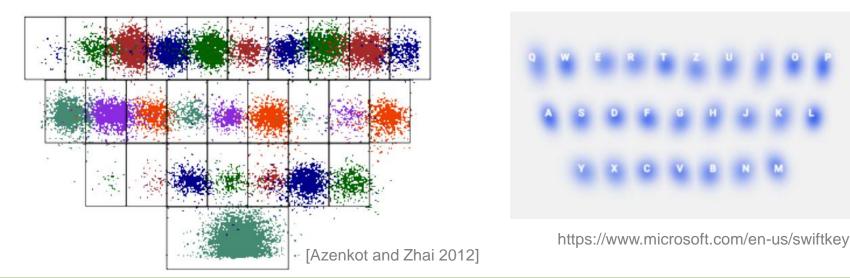
Parallax

eye – finger - screen

Mobile use

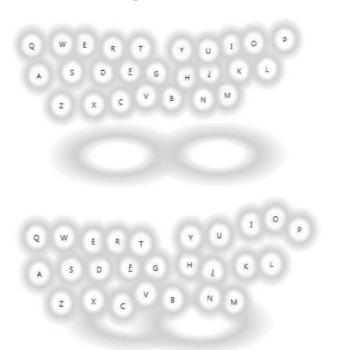
1-2 fingers, small keys, body movement

Variance in Touchscreen Keypresses

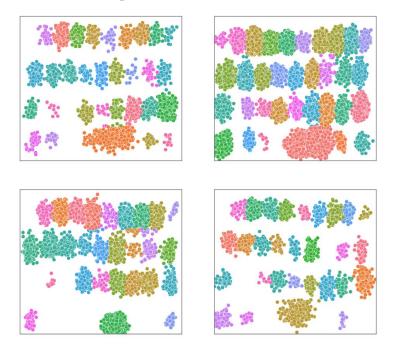

Spread of x,y touch locations around key centres

[Goodman et al. 2002]

Smartphone



Intelligent Text Entry

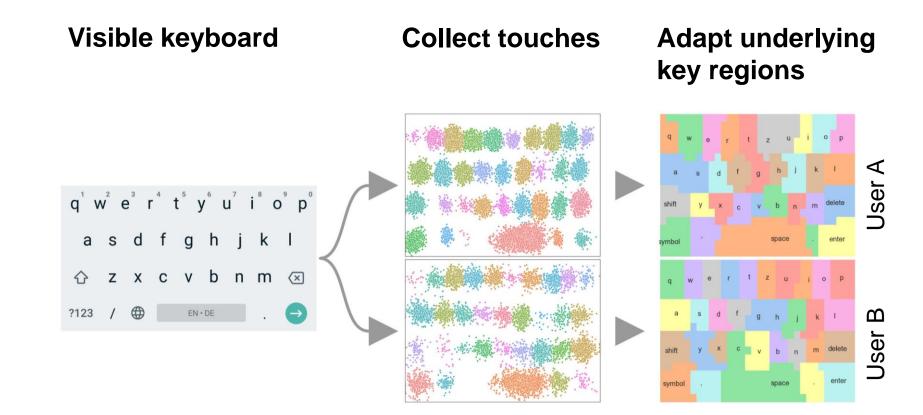

5

Individual Typing Behaviour

Tabletop

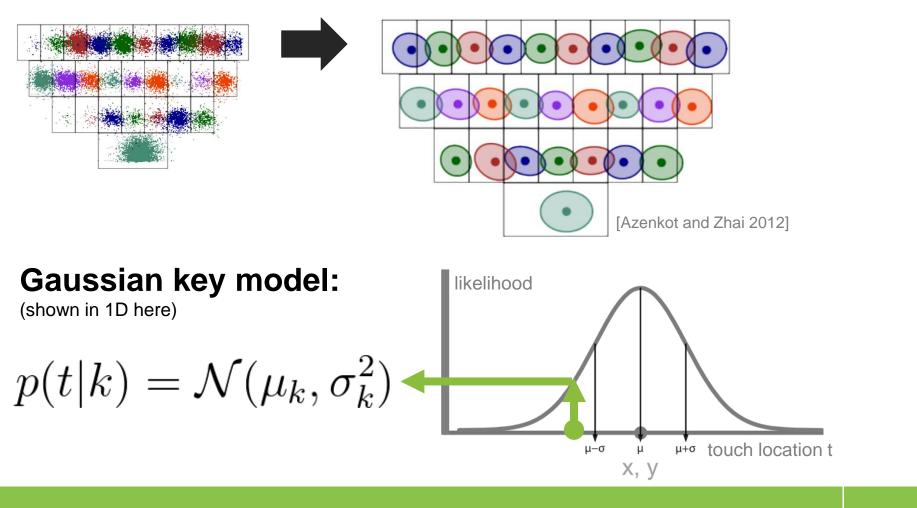
Smartphone

[Buschek et al. 2018]

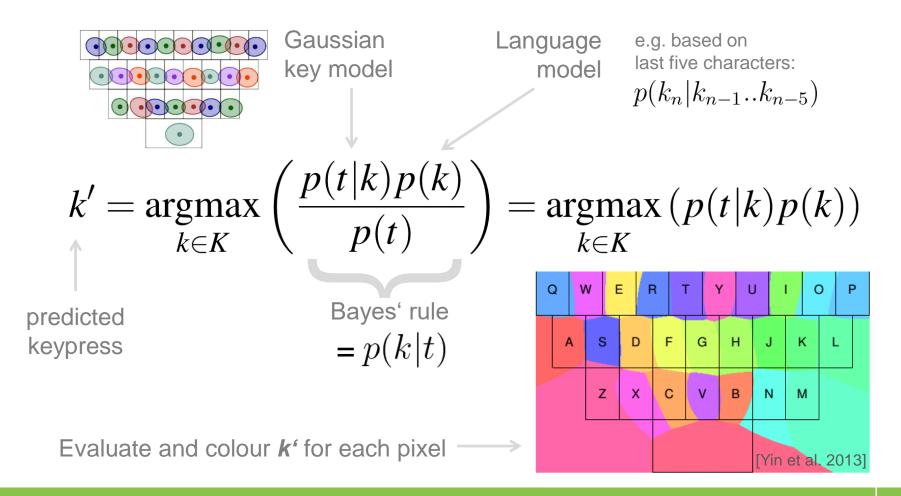

[Findlater and Wobbrock 2012]

Intelligent Text Entry

Daniel Buschek


Adapting Keyboards to Typists

Overview


Modelling Touchscreen Keypresses

From x,y touch points to one Gaussian per key

Probabilistic Keyboard Model

Which key does the user intend to press? i.e. "input decoding"

Intelligent Text Entry

9

DIY: Probabilistic Keyboard Model

touchX = ... // touch X coordinate touchY = ... // touch Y coordinate num_keys = ... // number of keys on keyboard means = [...] // list of all key means (2D key locations) variances = [...] // list of key variances (real values) or covariances (2x2 matrices)

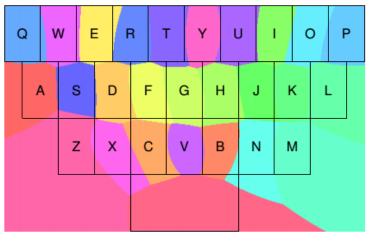
probs = [] // list to store the likelihoods of each key being pressed sum = 0 // variable to store sum of likelihoods for normalisation (see below)

for k = 0 to num_keys: // iterate over all keys
 // evaluate touch location under distribution of the key*:
 prob_t_given_k = multinormal_pdf(touchX, touchY, means[k], variances[k])
 // likelihood of key without touch info; uniform (here), or based on language*:
 prob_k = 1/num_keys
 // store product and add it to the sum of all likelihoods*:
 probs[k] = prob_t_given_k * prob_k
 sum = sum + probs[k]

// normalise, so that the likelihoods add up to 1*:
probs = probs / sum //note: "/" is element-wise division

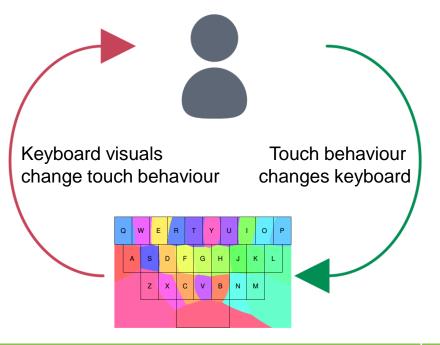
// find most likely key:
pressed_key_index = argmax(probs)
// TODO for adaptation: update means and variances with new touchX and touchY

* in real implementation use logarithm and corresponding operations for numerical stability


Language Model Influence

Example: bigram model for English

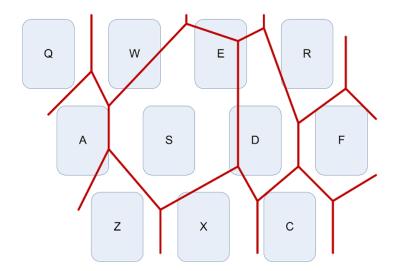
After "**n**": After "t": \mathbf{b} b f \mathbf{d} f \mathbf{d} \mathbf{g} \mathbf{g} \mathbf{h} \mathbf{h} \mathbf{m} \mathbf{m} С С \mathbf{W} \mathbf{W} \mathbf{t} \mathbf{t} b)a)


Adaptation in the Background

Why do our keyboards not look like this?

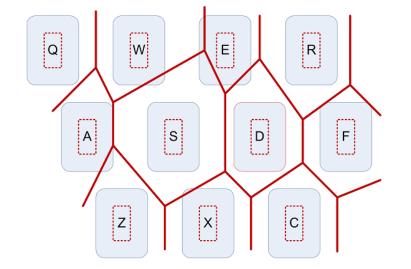
[Yin et al. 2013]

→ Avoid co-adaptation of user and system



Intelligent Text Entry

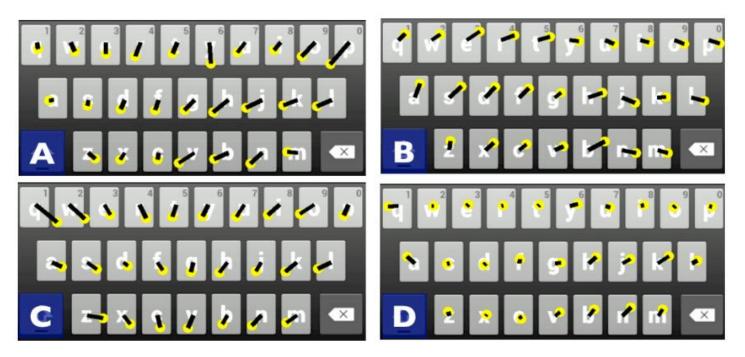
Daniel Buschek


Adaptation vs Distortion

Unlimited adaptation

Here: (almost) impossible to type "e"!

With protected key region


[Gunawardana et al. 2010]

Context Adaptations

e.g. hand posture – "ContextType", Goel et al. 2013

Left thumb

Right thumb

Index finger

Two thumbs

[Goel et al. 2013]

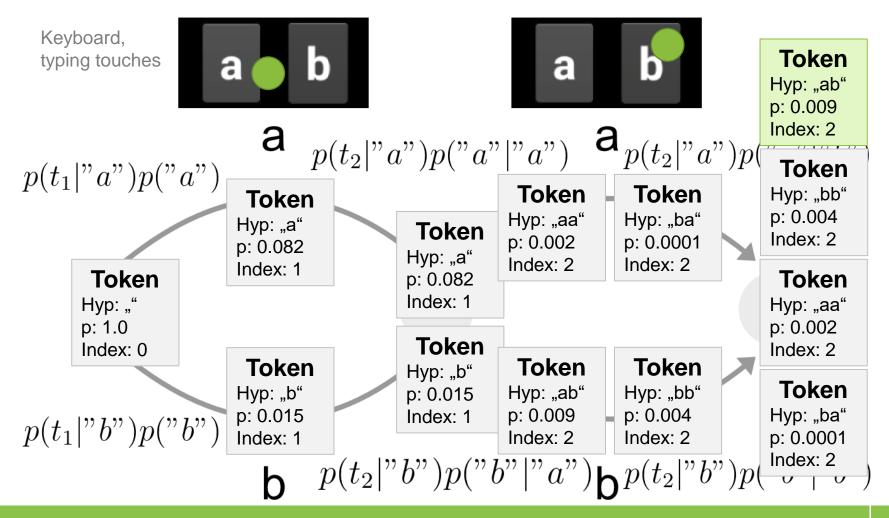
Intollu	aont		Lotny
Intelli	01-181	IHXI	
	gont		

Context Adaptations

e.g. walking – "WalkType", Goel et al. 2012

[Goel et al. 2012]

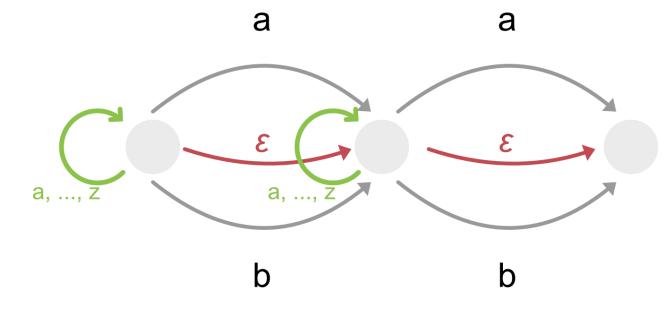
- Infer intended input after entering whole word or sentence
 - + More evidence for inference
 - + No need for user to pay attention to intermediate output
 - No intermediate feedback
- Example (sentence-based decoding):


"pleaseforwarxmetheatachement"

"Please forward me the attachement."

[Vertanen et al. 2015]

Token passing algorithm

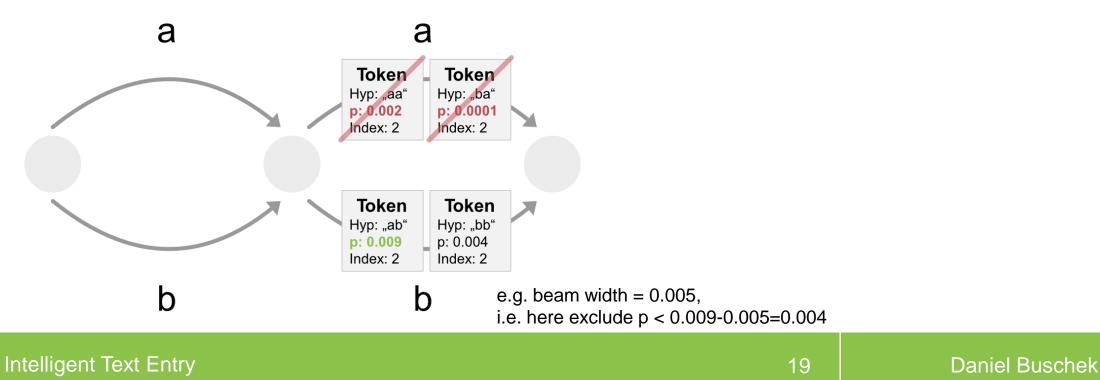


Intelligent Text Entry

Daniel Buschek

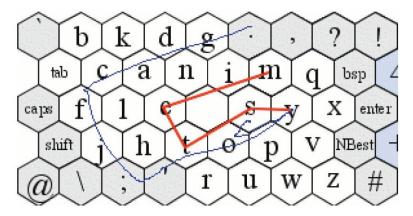
With insertion and deletion

- Previous slide: Substitution-only decoder
- Extensions: insertion and deletion transitions, with "penalty"

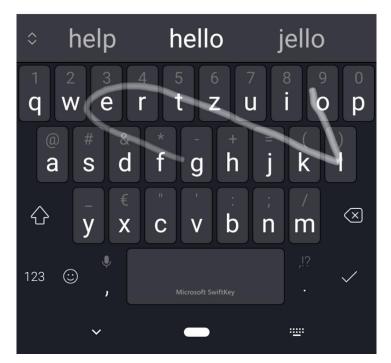


With beam search / pruning

Problem: Large search space Substitution-only → exponential, Insertion → infinite


Solution: Beam search / pruning

Per index, only propagate tokens that are within a certain range (=,,beam width") of the probability of the most likely token.



Gesture-based Decoding

Infer intended word from shape of finger trace on the keyboard

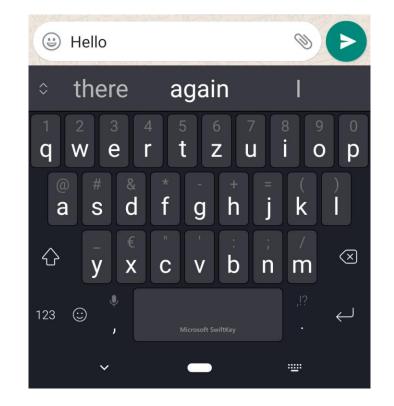
"SHARK²" [Kristensson and Zhai 2004]

Microsoft SwiftKey (screenshot Nov 2020)

Gesture-based Decoding

$$\begin{aligned} & \text{Shape model} \\ & w' = \mathrm{argmax}_{w \in W}(p(trace|w)p(w)) \end{aligned} \\ \end{aligned}$$

Stored template (ideal) shapes for all words in dictionary W


D

Word Prediction

- So far: Inference used touch input
- Now: Predict *next* word that user has not yet started to type, only using language context

$$p(w_t | w_{t-n} \dots w_{t-1})$$

- E.g. n-gram word models, i.e. context of last n-1 words
- More recently: Deep Learning to include larger context

Summary

 Improving keyboards by probabilistically combining input information with language information

Adaptation:

- Individual input behaviour \rightarrow adaptation to typist
- Further sensors \rightarrow adaptation to context

Prediction/Decoding:

- Single touch + language context \rightarrow current key
- Touch sequences + language context \rightarrow current word/sentence
- Language only → next word(s)

Questions & Discussion

- Which problems do adaptive and predictive keyboards address?
- Explain how touch information and language information can be combined for keyboard adaptation. What effect does this achieve at the pixel level?
- Explain decoding of touch sequences with token passing and beam pruning.
- Are adaptive and predictive keyboards "deceptive"?
- Which (further) factors could be considered for adaptation and word prediction in keyboards?
- Which other UIs beyond keyboards could benefit from similar approaches? What might have to be changed?

References

- Azenkot, S., & Zhai, S. (2012). Touch behavior with different postures on soft smartphone keyboards. *Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services*, 251–260. <u>https://doi.org/10.1145/2371574.2371612</u>
- Buschek, D., Bisinger, B., & Alt, F. (2018). ResearchIME: A Mobile Keyboard Application for Studying Free Typing Behaviour in the Wild. *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*, 1–14. <u>https://doi.org/10.1145/3173574.3173829</u>
- Findlater, L., & Wobbrock, J. (2012). Personalized input: Improving ten-finger touchscreen typing through automatic adaptation. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 815–824. https://doi.org/10.1145/2207676.2208520
- Goel, M., Findlater, L., & Wobbrock, J. (2012). WalkType: Using accelerometer data to accomodate situational impairments in mobile touch screen text entry. *Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems - CHI '12*, 2687. <u>https://doi.org/10.1145/2207676.2208662</u>
- Goel, M., Jansen, A., Mandel, T., Patel, S. N., & Wobbrock, J. O. (2013). ContextType: Using Hand Posture Information to Improve Mobile Touch Screen Text Entry. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 2795–2798. <u>https://doi.org/10.1145/2470654.2481386</u>
- Goodman, J., Venolia, G., Steury, K., & Parker, C. (2002). Language modeling for soft keyboards. *Proceedings* of the 7th international conference on Intelligent user interfaces, 194–195. https://doi.org/10.1145/502716.502753
- Gunawardana, A., Paek, T., & Meek, C. (2010). Usability guided key-target resizing for soft keyboards. *Proceedings of the 15th international conference on Intelligent user interfaces - IUI '10*, 111. <u>https://doi.org/10.1145/1719970.1719986</u>
- Holz, C., & Baudisch, P. (2011). Understanding touch. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 2501–2510. <u>https://doi.org/10.1145/1978942.1979308</u>

References

- Kristensson, P. O., & Vertanen, K. (2014). The inviscid text entry rate and its application as a grand goal for mobile text entry. *Proceedings of the 16th international conference on Human-computer interaction with mobile devices* & services, 335–338. <u>https://doi.org/10.1145/2628363.2628405</u>
- Kristensson, P.-O., & Zhai, S. (2004). SHARK2: A large vocabulary shorthand writing system for pen-based computers. *Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology UIST '04*, 43. <u>https://doi.org/10.1145/1029632.1029640</u>
- Vertanen, K., Memmi, H., Emge, J., Reyal, S., & Kristensson, P. O. (2015). VelociTap: Investigating Fast Mobile Text Entry using Sentence-Based Decoding of Touchscreen Keyboard Input. *Proceedings of the 33rd Annual* ACM Conference on Human Factors in Computing Systems, 659–668. https://doi.org/10.1145/2702123.2702135
- Yin, Y., Ouyang, T. Y., Partridge, K., & Zhai, S. (2013). Making touchscreen keyboards adaptive to keys, hand postures, and individuals: A hierarchical spatial backoff model approach. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 2775–2784. <u>https://doi.org/10.1145/2470654.2481384</u>

Further Reading:

- Bi, X., Li, Y., & Zhai, S. (2013). FFitts law: Modeling finger touch with fitts' law. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 1363–1372. <u>https://doi.org/10.1145/2470654.2466180</u>
- Oulasvirta, A., Kristensson, P. O., Bi, X., & Howes, A. (Hrsg.). (2018). *Computational Interaction*. Oxford University Press.

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 (CC BY-SA) license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Daniel Buschek

For more content see: https://iui-lecture.org

