
Adaptive and Predictive Keyboards

Daniel Buschek1



Learning Goals

▪ Challenges of mobile touch and typing

▪ Modelling typing behaviour

▪ Probabilistic methods for keyboard adaptation 
and input decoding
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Motivation: Fast typing without errors

▪ „Inviscid entry rate“:
Bottleneck is not the 
text entry UI but coming 
up with the text

▪ Estimated as 67 WPM

Here: mobile devices
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[Kristensson and Vertanen 2014]

→ Try to reach this on 

your phone without errors, 

e.g. in an online typing 

speed test.



Challenges for Mobile Typing
Why is it inaccurate?
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Parallax
eye – finger - screen

[Holz and Baudisch 2011]

Mobile use
1-2 fingers, small keys, body movement

Photo by Ketut Subiyanto

https://www.pexels.com/de-de/@ketut-subiyanto?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels


Variance in Touchscreen Keypresses
Spread of x,y touch locations around key centres
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[Goodman et al. 2002]

[Azenkot and Zhai 2012]

PDA

Smartphone

https://www.microsoft.com/en-us/swiftkey



Individual Typing Behaviour
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[Buschek et al. 2018][Findlater and Wobbrock 2012]

Tabletop Smartphone



Adapting Keyboards to Typists
Overview
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Modelling Touchscreen Keypresses
From x,y touch points to one Gaussian per key
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[Azenkot and Zhai 2012]

Gaussian key model:
(shown in 1D here)

touch location t

likelihood



Probabilistic Keyboard Model
Which key does the user intend to press? i.e. „input decoding“

Intelligent Text Entry Daniel Buschek9

predicted 

keypress

Gaussian 

key model

Language 

model

}

Bayes‘ rule

=

[Yin et al. 2013]
Evaluate and colour k‘ for each pixel

e.g. based on 

last five characters:



DIY: Probabilistic Keyboard Model
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touchX = ... // touch X coordinate

touchY = ... // touch Y coordinate

num_keys = ... // number of keys on keyboard

means = [...] // list of all key means (2D key locations)

variances = [...] // list of key variances (real values) or covariances (2x2 matrices)

probs = [] // list to store the likelihoods of each key being pressed

sum = 0 // variable to store sum of likelihoods for normalisation (see below)

for k = 0 to num_keys: // iterate over all keys

// evaluate touch location under distribution of the key*:

prob_t_given_k = multinormal_pdf(touchX, touchY, means[k], variances[k])

// likelihood of key without touch info; uniform (here), or based on language*:

prob_k = 1/num_keys

// store product and add it to the sum of all likelihoods*:

probs[k] = prob_t_given_k * prob_k

sum = sum + probs[k]

// normalise, so that the likelihoods add up to 1*:

probs = probs / sum //note: “/” is element-wise division

// find most likely key:

pressed_key_index = argmax(probs)

// TODO for adaptation: update means and variances with new touchX and touchY

* in real implementation use logarithm and corresponding operations for numerical stability



Language Model Influence
Example: bigram model for English
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After „n“: After „t“:



Adaptation in the Background
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Why do our keyboards 

not look like this? 

[Yin et al. 2013]

→ Avoid co-adaptation

of user and system

Keyboard visuals

change touch behaviour

Touch behaviour 

changes keyboard



Adaptation vs Distortion
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[Gunawardana et al. 2010]

Unlimited adaptation With protected key region

Here: (almost) impossible to type „e“!



Context Adaptations
e.g. hand posture – „ContextType“, Goel et al. 2013
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Left thumb Right thumb

Index finger Two thumbs

[Goel et al. 2013]



Context Adaptations
e.g. walking – „WalkType“, Goel et al. 2012
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[Goel et al. 2012]



Decoding Typing Sequences

▪ Infer intended input after entering whole word or sentence

More evidence for inference

No need for user to pay attention to intermediate output

No intermediate feedback

▪ Example (sentence-based decoding):
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[Vertanen et al. 2015]

„pleaseforwarxmetheatachement“

„Please forward me the attachement.“

Hit enter



Decoding Typing Sequences
Token passing algorithm
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Decoding Typing Sequences

▪ Previous slide: Substitution-only decoder

▪ Extensions: insertion and deletion transitions,
with „penalty“

With insertion and deletion
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Decoding Typing Sequences

▪ Problem: Large search space
Substitution-only → exponential, Insertion → infinite

▪ Solution: Beam search / pruning
Per index, only propagate tokens that are within a certain range
(=„beam width“) of the probability of the most likely token.

With beam search / pruning
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e.g. beam width = 0.005,

i.e. here exclude p < 0.009-0.005=0.004



Gesture-based Decoding
Infer intended word from shape of finger trace on the keyboard

Intelligent Text Entry Daniel Buschek20

„SHARK2“ [Kristensson and Zhai 2004]

Microsoft SwiftKey (screenshot Nov 2020)



Gesture-based Decoding
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Language modelShape model

Stored template (ideal) shapes

for all words in dictionary W
User‘s touch trace

Distance 

metric

…

e.g. see 

Kristensson and Zhai,

2004



Word Prediction

▪ So far: Inference used touch input

▪ Now: Predict next word that user 
has not yet started to type,
only using language context

▪ E.g. n-gram word models, i.e. 
context of last n-1 words

▪ More recently: Deep Learning 
to include larger context
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Summary

▪ Improving keyboards by probabilistically combining 
input information with language information

▪ Adaptation:

▪ Individual input behaviour → adaptation to typist

▪ Further sensors → adaptation to context

▪ Prediction/Decoding:

▪ Single touch + language context → current key

▪ Touch sequences + language context → current word/sentence

▪ Language only → next word(s)
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Questions & Discussion

▪ Which problems do adaptive and predictive keyboards 
address?

▪ Explain how touch information and language information 
can be combined for keyboard adaptation. What effect does 
this achieve at the pixel level?

▪ Explain decoding of touch sequences with token passing 
and beam pruning.

▪ Are adaptive and predictive keyboards „deceptive“?

▪ Which (further) factors could be considered for adaptation 
and word prediction in keyboards?

▪ Which other UIs beyond keyboards could benefit from 
similar approaches? What might have to be changed?

Intelligent Text Entry Daniel Buschek24



References
▪ Azenkot, S., & Zhai, S. (2012). Touch behavior with different postures on soft smartphone keyboards. 

Proceedings of the 14th international conference on Human-computer interaction with mobile devices and 
services, 251–260. https://doi.org/10.1145/2371574.2371612

▪ Buschek, D., Bisinger, B., & Alt, F. (2018). ResearchIME: A Mobile Keyboard Application for Studying Free 
Typing Behaviour in the Wild. Proceedings of the 2018 CHI Conference on Human Factors in Computing 
Systems, 1–14. https://doi.org/10.1145/3173574.3173829

▪ Findlater, L., & Wobbrock, J. (2012). Personalized input: Improving ten-finger touchscreen typing through 
automatic adaptation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 815–
824. https://doi.org/10.1145/2207676.2208520

▪ Goel, M., Findlater, L., & Wobbrock, J. (2012). WalkType: Using accelerometer data to accomodate situational 
impairments in mobile touch screen text entry. Proceedings of the 2012 ACM Annual Conference on Human 
Factors in Computing Systems - CHI ’12, 2687. https://doi.org/10.1145/2207676.2208662

▪ Goel, M., Jansen, A., Mandel, T., Patel, S. N., & Wobbrock, J. O. (2013). ContextType: Using Hand Posture 
Information to Improve Mobile Touch Screen Text Entry. Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, 2795–2798. https://doi.org/10.1145/2470654.2481386

▪ Goodman, J., Venolia, G., Steury, K., & Parker, C. (2002). Language modeling for soft keyboards. Proceedings 
of the 7th international conference on Intelligent user interfaces, 194–195. 
https://doi.org/10.1145/502716.502753

▪ Gunawardana, A., Paek, T., & Meek, C. (2010). Usability guided key-target resizing for soft keyboards. 
Proceedings of the 15th international conference on Intelligent user interfaces - IUI ’10, 111. 
https://doi.org/10.1145/1719970.1719986

▪ Holz, C., & Baudisch, P. (2011). Understanding touch. Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, 2501–2510. https://doi.org/10.1145/1978942.1979308

Daniel Buschek25Intelligent Text Entry

https://doi.org/10.1145/2371574.2371612
https://doi.org/10.1145/3173574.3173829
https://doi.org/10.1145/2207676.2208520
https://doi.org/10.1145/2207676.2208662
https://doi.org/10.1145/2470654.2481386
https://doi.org/10.1145/502716.502753
https://doi.org/10.1145/1719970.1719986
https://doi.org/10.1145/1978942.1979308


References
▪ Kristensson, P. O., & Vertanen, K. (2014). The inviscid text entry rate and its application as a grand goal for 

mobile text entry. Proceedings of the 16th international conference on Human-computer interaction with mobile 

devices & services, 335–338. https://doi.org/10.1145/2628363.2628405

▪ Kristensson, P.-O., & Zhai, S. (2004). SHARK2: A large vocabulary shorthand writing system for pen-based 

computers. Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology -

UIST ’04, 43. https://doi.org/10.1145/1029632.1029640

▪ Vertanen, K., Memmi, H., Emge, J., Reyal, S., & Kristensson, P. O. (2015). VelociTap: Investigating Fast Mobile 

Text Entry using Sentence-Based Decoding of Touchscreen Keyboard Input. Proceedings of the 33rd Annual 

ACM Conference on Human Factors in Computing Systems, 659–668. 

https://doi.org/10.1145/2702123.2702135

▪ Yin, Y., Ouyang, T. Y., Partridge, K., & Zhai, S. (2013). Making touchscreen keyboards adaptive to keys, hand 

postures, and individuals: A hierarchical spatial backoff model approach. Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems, 2775–2784. https://doi.org/10.1145/2470654.2481384

Further Reading:

▪ Bi, X., Li, Y., & Zhai, S. (2013). FFitts law: Modeling finger touch with fitts’ law. Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems, 1363–1372. https://doi.org/10.1145/2470654.2466180

▪ Oulasvirta, A., Kristensson, P. O., Bi, X., & Howes, A. (Hrsg.). (2018). Computational Interaction. Oxford 

University Press.

Daniel Buschek26Intelligent Text Entry

https://doi.org/10.1145/2628363.2628405
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2470654.2481384
https://doi.org/10.1145/2470654.2466180


License

Daniel Buschek

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 (CC BY-SA) license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Daniel Buschek

For more content see: https://iui-lecture.org

27


