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“By far the greatest danger of Artificial Intelligence is that people 
conclude too early that they understand it.” 
[Yudkowsky 2008]
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The “Clever Hans” Problem

Source: Unknown Author, Public domain, via Wikimedia Commons
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The “Clever Hans” Problem

Source: Winkler et al. 2019 American Medical Association

[Winkler et al. 2019] | 8
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The Black Box Problem of Machine Learning

“[…] stems from the mismatch between 
mathematical optimization in high-dimensionality 
characteristic of machine learning and the 
demands of human-scale reasoning and styles of 
semantic interpretation.”

[Burrell 2016]
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Source: Courtesy of Quay Au 
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The Black Box Problem of Machine Learning

[Gunning 2017] | 10

Machine Learning 

Process

This is a fox

(p=.93)
Learned Function

Labelled Training Data

Input

Output: Prediction
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The Black Box Problem of Machine Learning

[Gunning 2017] | 11

Machine Learning 

Process

This is a fox

(p=.93)

Lineare Modelle Decision Trees / 
Ensembles

Nicht-Lineare Modelle
(DNN, SVM)

Learned FunctionBlack Box

Labelled Training Data

Input

Output: Prediction
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The Black Box Problem of Machine Learning

[Gunning 2017] | 12

Machine Learning 

Process

This is a fox

(p=.93)
Learned FunctionBlack Box

Labelled Training Data

Input

Output: Prediction User with a task
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Why did you that?
Why not something else?
When do you succeed?
When do you fail?
When can I trust you?
How do I correct an error?

The Black Box Problem of Machine Learning

[Gunning 2017] | 13

Machine Learning 

Process

This is a fox

(p=.93)
Learned FunctionBlack Box

Labelled Training Data

Input

Output: Prediction User with a task

?
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The Black Box Problem of Machine Learning

[Gunning 2017] | 14

Machine Learning 

Process

This is a fox

(p=.93)
Learned FunctionBlack Box

Labelled Training Data Output: Prediction User with a task

?

This is a fox because …

+ it has auburn fur

+ it has pointy ears

Explanation Interface

Input
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Discussion

1) There has always been proprietary, non-interpretable knowledge. 
What is different now?

2) We do not need to understand how a motor works to drive a car –
why do we need to understand ML models now?

| 15

Discuss for 5min in 
breakout rooms
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AI in the Courtroom

[Hao 2019, Kugler et al. 2018] | 17

Bias in training data set

Source: Andrey Popov in Kugler et al. 2018
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AI in Financing

[Kayser-Bril 2020b, Phaure & Robin 2020] | 18

Lack of transparency

Source: Photo by Fitore F. | Unsplash
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AI in Recruiting

[Kayser-Bril 2020b, Phaure & Robin 2020] | 19

Discrimination due to bias in training data set
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Does AI Have a “Gaydar”?

[Agüera y Arcas et al. 2018, Yilun & Kosinski 2018] | 20

Lack of interpretability

Source : Own Design after Alami in Levin 2017
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AI Acting Information Control?

[Benton 2019, Hurtz 2019] | 21

Source : Benton 2019

Lack of feedback and 

correction



Explainable AI | Sarah Theres Völkel

AI as Translator?

[Kayser-Bril 2020a] | 22

Lack of transparency about algorithm limitations

Source: www.translate.google.com
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Everyday Challenges with Intelligent Systems

[Eiband et al. 2019a, Eslami et al. 2018, Jhaver et al. 2018] | 23

Lack of Algorithmic Awareness Intransparent RecommendationsAlgorithmic Anxiety

Source: www.facebook.com Source: www.airbnb.com
Source: www.netflix.com
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Right to Explanation in the GDPR

Article 22

The data subject should have the right not to be subject to a decision, which may include 
a measure, evaluating personal aspects relating to him or her which is based solely on 
automated processing and which produces legal effects concerning him or her or 
similarly significantly affects him or her, such as automatic refusal of an online credit 
application or e-recruiting practices without any human intervention.

[…]

In any case, such processing should be subject to suitable safeguards, which should 
include specific information to the data subject and the right to obtain human 
intervention, to express his or her point of view, to obtain an explanation of the 
decision reached after such assessment and to challenge the decision.

| 24
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Human-Centred Artificial Intelligence

“Human-Centred Artificial Intelligence (HCAI) focuses on amplifying, augmenting, and 

enhancing human performance in ways that make systems reliable, safe, and trustworthy. 

These systems also support human self-efficacy, encourage creativity, clarify responsibility, and 

facilitate social participation.”
[Shneiderman 2020]

| 26

Source: Andy Kelly | Unsplash
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What is Explainability?

• “… the ability to explain or to present in 
understandable terms to a human” [Doshi-Velez & Kim 2017]

• “… is the degree to which a human can understand the 
cause of a decision” [Miller 2017]

• “… is the degree to which a human can consistently 
predict the model's result” [Kim et al. 2016]

• “Explainability”, “Interpretability”, and “Transparency” 
are often used interchangeably

| 27

Source: Courtesy of Quay Au
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Applications of Explainability

1. Model Validation: Eliminate bias in the 
training data

2. Model Debugging: Debug models and 
analyse wrong predictions

3. Knowledge Discovery: Gain new insights 
through the analysis

[Du et al. 2020] | 28

Source: [Molnar 2019]
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Model Validation
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Classified as Dog Classified as Wolf

Source: Brandon Messner | Unsplash Source: Jose Carls Ichiro | Unsplash
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Model Validation

[Ribeiro et al. 2016] | 30

Classified as Wolf LIME-Explanation (idealised)

Source : Kateryna Babaieva | Pexels, adapted after [Ribeiro et al. 2016]Source: Kateryna Babaieva | Pexels
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Model Debugging

Adversarial Attacks

[Goodfellow et al. 2014] | 31

+ =

“panda”

57.7% confidence

“gibbon”

99.3% confidence

Image Source: Own design after Goodfellow et al. 2014
Photo: Mélody P. | Unsplash
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Model Debugging

Adversarial Attacks in Traffic

Image & Content:[Eykholt et al. 2018] | 32

+ =

“stop sign”

76.0% confidence

“no stop sign”

97.3% confidence
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Knowledge Discovery

[Caruana et al. 2015] | 33

Source: CDC | Unsplash Source: [Caruana et al. 2015]
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Local vs Global Interpretability

Image & Content: [Du 2020] | 34

• Local Interpretability: Explain
individual predictions (causal relations
between input and corresponding
output) →why a certain prediction?

• Global Interpretability: Explain
structures and parameters for a global 
understanding (inner workings & 
mechanisms) → how are predictions
made?
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Intrinsic vs Post-hoc Interpretability

[Du 2020] | 35

Brown fur?

Fox Black & white fur?

Lion

Panda

Black spots around
eyes?

Zebra

True

True

True

False

False

False

Intrinsic Interpretability: 
self-explanatory models which 
integrate interpretability directly in the 
structure
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Intrinsic Interpretability
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Intrinsic vs Post-hoc Interpretability

[Du 2020] | 37

Brown fur?

Fox Black & white fur?

Lion

Panda

Black spots around
eyes?

Zebra

True

True

True

False

False

False

Intrinsic Interpretability: 
self-explanatory models which 
integrate interpretability directly in the 
structure

Post-hoc Interpretability: 
a second model is needed that creates 
explanations for the existing model

Source: [Ribeiro et al. 2016] 
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Local Interpretable Model-Agnostic 
Explanations (LIME)

Intuition

1) Divide input into interpretable components that 

“make sense” to humans (e.g. words or parts of image) 

Image & Content: [Ribeiro et al. 2016] |38
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Local Interpretable Model-Agnostic 
Explanations (LIME)

Intuition

1) Divide input into interpretable components that 

“make sense” to humans (e.g. words or parts of image) 

2) Generate random perturbations of data set 

Image & Content: [Ribeiro et al. 2016] |39
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Local Interpretable Model-Agnostic 
Explanations (LIME)

Intuition

1) Divide input into interpretable components that 

“make sense” to humans (e.g. words or parts of image) 

2) Generate random perturbations of data set 

3) Predict classes for these perturbations using your black box model

Image & Content: [Ribeiro et al. 2016] |40
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Local Interpretable Model-Agnostic 
Explanations (LIME)

Intuition

1) Divide input into interpretable components that 

“make sense” to humans (e.g. words or parts of image) 

2) Generate random perturbations of data set 

3) Predict classes for these perturbations using your black box model

4) Weight the perturbations (importance) according to their proximity to 

the original input.

Image & Content: [Ribeiro et al. 2016] |41
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Local Interpretable Model-Agnostic 
Explanations (LIME)

Intuition

1) Divide input into interpretable components that 

“make sense” to humans (e.g. words or parts of image) 

2) Generate random perturbations of data set 

3) Predict classes for these perturbations using your black box model

4) Weight the perturbations (importance) according to their proximity to 

the original input.

5) Train a weighted, interpretable model on the dataset with the 

variations.

Image & Content: [Ribeiro et al. 2016] |42
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Local Interpretable Model-Agnostic 
Explanations (LIME)

Intuition

1) Divide input into interpretable components that 

“make sense” to humans (e.g. words or parts of image) 

2) Generate random perturbations of data set 

3) Predict classes for these perturbations using your black box model

4) Weight the perturbations (importance) according to their proximity to 

the original input.

5) Train a weighted, interpretable model on the dataset with the 

variations.

6) Explain the prediction by interpreting the local model.

Image & Content: [Ribeiro et al. 2016] |43
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Local Interpretable Model-Agnostic 
Explanations (LIME)

Practical Example:

https://colab.research.google.com/github/arteagac/arteagac.github.io/blob/mast
er/blog/lime_image.ipynb

| 44
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Trade-Off Interpretability & Accuracy

Image & Content: [Gunning 2017] | 45
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Discussion

1) How does Netflix explain why a movie / TV show is recommended 
to the user?

2) Do you think this explanation helps users?

| 47

Source: www.netflix.com

Discuss for 5min in 
breakout rooms
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Challenges for HCI Research

• Understand: Enable users to develop an 
appropriate mental model

• Trust: Enable users to calibrate their trust in the
model

• Correct: Enable users to correct the model

| 48

Source: [Molnar 2019]
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Local vs Global Explanation

| 49

Source: mail.google.com

Local Explanation
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Local vs Global Explanation
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Global Explanation

Source: https://adssettings.google.com
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What to Explain

| 51

Explanation Types

§ What?

§ Why?

§ Why not?

§ How to?

§ Inputs?

§ Outputs?

§ What if?

§ Certainty?

[Lim & Dey 2009, 2010, 2011]

Goals of Explanations

§ Transparency

§ Scrutability

§ Trust

§ Effectiveness

§ Persuasiveness

§ Efficiency

§ Satisfaction
[Tintarev & Masthoff 2012]
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Explanations in Today’s Systems

“Why”

Explanation

“Certainty” 

Explanation

Source: www.netflix.com

Source: www.amazon.de

Transparency
Trust
Effectiveness
Persuasiveness
Satisfaction
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Explanations in Today’s Systems

| 53

“Why” 

Explanation

“Inputs” 

Explanation

Source: www.facebook.com

Transparency
Scrutability

Persuasiveness
Satisfaction
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Which Questions Do Users Have?

Image & Content: [Liao et al. 2020] | 54
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Insights from Social Sciences

• Explanations are contrastive: Why X instead of Y?

Your Mortgage was rejected since your monthly 
income is smaller than your neighbour’s. 

Source: [Shneiderman 2020]

[Du 2020, Miller 2017; Molnar 2019] | 55
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Contrastive example-based Explanations

Normative Explanations Comparative Explanations

Improves

Undertrust
Avoids

Overtrust

Image & Content:[Cai et al. 2019] | 56
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Insights from Social Sciences

• Explanations are contrastive: Why C instead of Y?

• Explanations are selective: Show the most important information
that contributed to a decision (at the cost of completeness)

[Du 2020, Miller 2017; Molnar 2019] | 57
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Explanations Are Selective

Source: www.facebook.com

| 58
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Insights from Social Sciences

• Explanations are contrastive: Why C instead of Y?

• Explanations are selective: Show the most important information
that contributed to a decision (at the cost of completeness)

• Explanations are credible: Be consistent with users‘ prior
knowledge

Your mortgage was rejected because you have 
an A-level degree.

[Du 2020, Miller 2017; Molnar 2019] | 59

Source: [Shneiderman 2020]
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Insights from Social Sciences

• Explanations are contrastive: Why C instead of Y?

• Explanations are selective: Show the most important information 
that contributed to a decision (at the cost of completeness)

• Explanations are credible: Be consistent with users‘ prior 
knowledge

• Explanations are conversational: Who reads an explanation? 
Allow users to raise queries

[Du 2020, Miller 2017; Molnar 2019] | 60
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Explanations Are Conversational

Source: www.amazon.de

Why not also 

book X?

Why this book 

first?

What happens 

if…

| 61
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Post-hoc vs Interactive Explanations

Image & Content: [Shneiderman 2020] | 62
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Interactive Explanations

Image & Content: [Cheng et al. 2019] | 63
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Placebo Explanations

No Explanation Placebo Explanation Actual Explanation

Image & Content: [Eiband et al. 2019b] | 64
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Discussion

How would you improve Netflix’ explanation of why a particular 
movie was recommended?

| 65

Source: www.netflix.com

Discuss for 5min in 
breakout rooms
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Which Problems Do Users Face?

What is an 
algorithm?

The app 
crashes too 

often

[Eiband et al. 2019a] | 67
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Research Design

1 Reviews 2 Topic Modeling 3 Problems

Problem 1

Problem 2

Problem 3

Problem n

…

[Eiband et al. 2019a] | 68

Source: play.google.com
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System SupportOnline Survey5

1

2

3

How often did you encounter 
a similar situation?

How did you cope with this 
situation?

How could the app support 
you in this situation?

6 Problems1 2Reviews Topic Modeling 3

Problem 2

Problem 3

Problem n

…

Problem 1

Research Design

Source: play.google.com

[Eiband et al. 2019a] | 69
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Support Strategies

Support for
problemswith

User
feedback

User choice

Algorithm

Knowledge
base

Reveal uncertaintyMore info
on output

Allow for
user feedback

Transparent selection

Provide
alternatives

Include other
users' views

Expressive
user feedback

On/off switch for
intelligent components

More info
on output

Ask for permission before
overwriting user's choice

Direct control
&more control options

Defaults &
alternatives

Allow for
user feedback

Adapt to user

Inform about changes

Control &
explanations

[Eiband et al. 2019a] | 70
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Lack of Feedback Opportunities

Eden Thomson

The rating system is still horrible, every movie I look at says 98% match like how 
am I supposed to know if I should actually watch the movie if every movie is a 
match. Bring back the star system. […]

August 3, 2018

Bildquelle: eigene Anfertigung

Source: www.netflix.com

[Eiband et al. 2019a] | 71
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Lack of Feedback Opportunities

“Suggest movies which only match my movies by 50% but have been 

received good ratings (by other users).“

“The system should show me more TV shows that all people like [….], not 

only those that I will probably like.”

[Eiband et al. 2019a] | 72

Source: www.netflix.com
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Lack of User Control

Source: www.maps.google.de

Charlotte Brooks

I choose [a route] because I want to take the s[ce]nic route. Then, 
without telling me just puts me back on the quickest route. 
Which drives me insane - not everyone its trying to get places fast 
some of us like to see the world while do it.

July 20, 2018

[Eiband et al. 2019a] | 73
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Lack of User Control

“Ask for permission bevor the route is changed.”

“At least offer the option “Don‘t change’.”

[Eiband et al. 2019a] | 74

Source: www.maps.google.de
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Take Aways

• Machine learning models are black boxes which are 
opaque to developers and end users

• As a consequence, there are several challenges for 
individual users as well as society when employing 
machine learning

• Machine learning models have to be explainable – either 
by choosing intrinsic or post-hoc models

• Explanations have to be designed carefully to be easily 
understandable 

| 75
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Trustworthy Certification:

External Reviews

Safety Culture: 

Organisational Design

Beyond Explainability

Reliable Systems: 

Software Engineering
Source: Courtesy of Quay Au

[Shneiderman 2020] | 76
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Thank you to Malin Eiband and 
Michael Chromik
- who contributed to earlier versions of this slide deck
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