

Intelligent Usable Security

Intelligent Usable Security

Learning Goals

- Know about important terms and definitions.
- Gain an appreciation for the importance of usability within security and privacy.
- Understand opportunities and challenges of designing user interfaces for intelligent security mechanisms.

lefinitions. tance of usability

Categorisation of Authentication Concepts Terms & Definitions

token-based

hardware

software

Intelligent Usable Security

Goals of the User Adams et al., 1999

Benutzer

Intelligent Usable Security

Ziel / Aufgabe (z.B. WhatsApp)

Goals of a Security Expert Adams et al., 1999

Intelligent Usable Security

Ziel / Aufgabe (z.B. WhatsApp)

Make it secure!

Goals of a Security Expert Adams et al., 1999

Intelligent Usable Security

Ziel / Aufgabe (z.B. WhatsApp)

Make it secure!

Most Frequent PINs and Passwords

The 25 most frequent PINs

1. 1234	14. 2468
2.0000	15. 9999
3. 2580	16. 7777
4. 1111	17. 1996
5. 5555	18. 2011
6. 5683	19. 3333
7.0852	20. 1999
8. 2222	21. 8888
9. 1212	22. 1995
10. 1998	23. 2525
11. 6969	24. 1590
12. 1379	25. 1235
13. 1997	

The 25 most frequent passwords

- 1. password
- 2. 123456
- 3. 12345678
- 4. 1234
- 5. qwerty
- 6. 12345
- 7. dragon
- 8. pussy
- 9. baseball
- 10. football
- 11. letmein
- 12. monkey
- 13. 696969

http://www.netzpiloten.de/die-25-haufigsten-passworter-und-pins/

Intelligent Usable Security

- 14. abc123
- 15. mustang
- 16. michael
- 17. shadow
- 18. master
- 19. jennifer
- 20. 111111
- 21.2000
- 22. jordan
- 23. superman
- 24. harley
- 25. 1234567

Password Policies

Security	PASSWORD Change Password		Last changed August 12, 2015. Done
			These questions are used to verify your identity or help reset your password.
	······································	8	A verified rescue email will allow you to reset your security questions if you ever forget them.
	 8 or more characters Upper & lowercase letters At least one number Strength: strong 	unt.	Two-step verification is an additional security feature designed to prevent anyone from accessing your account, even if they have your password.
	Avoid passwords that are easy to guess or used with other websites.		
Devices	Cancel Change Password		

https://support.apple.com/en-us/HT201303

Intelligent Usable Security

Security and Human Factors A definition by Jakob Nielson

"A big lie of computer security is that security improves" as password complexity increases. In reality, users simply write down difficult passwords, leaving the system vulnerable. Security is better increased by designing for how people actually behave."

NN/g Nielsen Norr	nan Group	Log i	
Norld Leaders in Research-Based Use	er Experience	Search	
Iome Articles Training & Events	Consulting Reports & Books About NN/g		
opics	Security & Human Factors		
gile esign Process	Summary: A big lie of computer security is that security improves	as password complexity increases. In reality, users	
commerce	simply write down difficult passwords, leaving the system vulnerab	ble. Security is better increased by designing for how	
tranets	people actually behave.		
avigation			
sychology and UX	By Jakob Nielsen on November 25, 2000	Share this article:	
esearch Methods	Topics: Human Computer Interaction		
ser Testing			
eb Usability	Usability advocates and security people have opposite goals that create	a fundamental conflict:	
riting for the Web	Lashiliku sekuastas fayar making it assuta yas a sustam idasllu s	avisian na anasial assass preseduras at all subarass	
See all topics	 Security acvocates ravor making it easy to use a system, leasing it security people favor making it hard to access a system, at least for 	r unauthorized users.	
opular Articles	How do we resolve this conflict? By recognizing that the real goal of secu	rity is to minimize the relative amount of unauthorized use.	
opular Articles D Usability Heuristics for User Interface esign	How do we resolve this conflict? By recognizing that the real goal of secu Although a system with extremely poor usability would certainly discourse as well.	rity is to minimize the <i>relative</i> amount of unauthorized use. ge unauthorized users, it is likely to turn off the target users	

Jakob Nielsen. Security and Human Factors. https://www.nngroup.com/articles/security-and-human-factors/

Intelligent Usable Security

Intelligent Usable Security

Keep it usable!

Ziel / Aufgabe (z.B. WhatsApp)

Make it secure!

Usable Security and Privacy

Aim of Usable Security and Privacy: To make privacy and security and integrated, natural, unburdened part of Human-Computer Interaction.

Intelligent Usable Security

Security is a Secondary Task

Intelligent Usable Security

Misligned Priorities

Use two-factor authentication to keep the bad guys out!

Security Experts

Intelligent Usable Security

I'll use an easy-toremember PIN because I don't want to be locked out!

Users

Complicated Security Concepts

What if I don't?

https://social.technet.microsoft.com/Forums/en-US/f9912914-ad11-4d5c-8b13-756dbca46533/only-openattachments-from-trustworthy-sources-prompt-popping-up-on-emails-from-people-in-same?forum=outlook

Intelligent Usable Security

Limited Capacity of Users

https://techsolvers.com.au/blog/how-to/choose-manage-strong-passwords/

https://me.me/i/changed-all-my-passwords-to-incorrect-so-whenever-i-forget-3419912

Intelligent Usable Security

I changed all my passwords to "incorrect".

So whenever I forget, it will tell me "Your password is incorrect."

Habituation

🔿 😑 🔿 Security Error: Domain Name Mismatch	🔿 😑 🔿 Security Error: Domain Name Mismatch	
You have attempted to establish a connection with "www.whitehouse.gov". However, the security certificate presented belongs to "a248.e.akamai.net". It is possible, though unlikely, that someone may be trying to intercept your	Something happened and you need to click OK to get on with doing things.	
communication with this web site. If you suspect the certificate shown does not belong to "www.whitehouse.gov", please cancel the connection and notify the site administrator.	Certificate mismatch security identification administrator communication intercept liliputian snotweasel foxtrot omegaforce.	
View Certificate Cancel OK	Technical Crap Cancel OK	

Image courtesy of Johnathan Nightingale

Intelligent Usable Security

Humans are Prone to Social Engineering

From: Netflix <noreply@netl.com> Sent: 03 March 2016 14:12 Subject: You need to update your payment method

Update Payment Method

We were unable to bill your membership for the current month. To ensure that the service will not be interrupted, please update your payment method.

To update your payment method, click: Sign In to Netflix then you will be prompted to update your payment method.

Intelligent Usable Security

Humans are Prone to Side-Channel Attacks Shoulder Surfing

Malin Eiband, Mohamed Khamis, Emanuel von Zezschwitz, Heinrich Hussmann, and Florian Alt. 2017. Understanding Shoulder Surfing in the Wild: Stories from Users and Observers. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 4254-4265.

Intelligent Usable Security

Humans are Prone to Side-Channel Attacks Smudge Attacks

Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith. 2010. Smudge attacks on smartphone touch screens. In Proceedings of the 4th USENIX conference on Offensive technologies (WOOT'10). USENIX Association, Berkeley, CA, USA, 1-7.

Intelligent Usable Security

Humans are Prone to Side-Channel Attacks Thermal Attacks

Yomna Abdelrahman, Mohamed Khamis, Stefan Schneegass, and Florian Alt. 2017. Stay Cool! Understanding Thermal Attacks on Mobile-based User Authentication. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. (CHI '17). ACM, New York, NY, USA, 3751-3763.

Intelligent Usable Security

Florian Alt

21

Selected Threats in Authentication Terms & Definitions

- Guessing Attack
- Observation Attack, e.g.,
 - Shoulder Surfing
- Reconstruction Attacks, e.g.
 - Smudge Attack
 - Thermal Attack
- Mimicry Attacks

Intelligent Usable Security

Florian Alt

22

Personas & Task Frequency Analysis

Recap from Human-Computer Interaction

- Who are your users?
- What is the user trying to do?
 - What is their goals?
 - What is their needs?
 - Which tasks result from this?

Task Persona	Group reservation	Change of itinerary	Booking child care	Comparing sales agent performance
Sales agent	0.2	0.1	0.1	0
Manager	0	0	0	0.3
Traveler	0.01	0.2	0.01	0

Intelligent Usable Security

Threat Modeling

- Can't protect against everything
 - Too expensive
 - Too inconvenient
 - Not worth the effort

Approach

- Identify likely attackers and their resources — Dumpster diving or rogue nation?
- Identify most likely ways system will be attacked — e.g., user-centred attack
- Identify consequences of possible attacks — Mild embarrassment or bankruptcy?
- Design security measures accordingly

 Accept that they will not defend against all attacks

tacks y? ly gainst all attacks

Modeling the Attacker

- What type of action will they take?
 - Passive (look, but don't touch)
 - Active (look and inject messages)
- How sophisticated are they?
- How much do they care?
- What resources do they have?
 - How much time/money will they spend?
- How much do they already know?
 - External / internal attacker?

Modeling the Attack

- Identify possible attacks
 - From the literature
 - From brainstorming (e.g., scenario analysis)
- Attack Description:

We assume an attacker who is already in possession of a user's password pattern for a mobile device. That is, the first security barrier has already been breached. How the attacker got this information is of no concern here. In addition, the attacker managed to retrieve the mobile device (e.g. using pickpocketing) and wants to gain access to valuable information on it. For this, as for other commercial systems, the attacker has three tries until the device will be blocked.

Adapted from "De Luca et al. 2012. Touch me once and i know it's you! Implicit authentication based on touch screen patterns. In Proc. of CHI '12".

Intelligent Usable Security

Towards Intelligent Usable Security

Intelligent Usable Security

Identifying Users from Behavior

Intelligent Usable Security

Challenges

Enrollment

- Fallback Authentication
- Re-Authentication
- User View / Privacy

Albrecht Schmidt and Thomas Herrmann. 2017. Intervention user interfaces: a new interaction paradigm for automated systems. interactions 24, 5 (September - October 2017), 40-45. DOI:https://doi.org/10.1145/3121357

Intelligent Usable Security

O Albrecht Schmidt, University of Stuttgart mas Herrmann, Ruhr-University of Bochum

A New Paradigm Systems

Which design principles hold for "intervention security interfaces"?

- Ensure expectability and predictability.
- Communicate options for interventions.
- Allow easy exploration of interventions.
- Easy reversal of automated and intervention actions.
- Minimize required attention.
- Communicate how control is shared.

Mini Exercise

Towards Intelligent Authentication

Available information

- User Location / Time
- Activity
- People in the Vicinity
- User's Emotional State
- User's Stress Level
- Current Cognitive Load
- App Usage History

Intelligent Usable Security

Task: 5 minutes | teams of 3 Discuss, how context information could be used to (a) enhance current

Authentication Contexts

- Smartphone
- Smart Home Appliance
 - (TV, fridge, vacuum
 - cleaner)
- Chose your own

authentication mechanisms or to (b) build a new authentication mechanism?

Mini Exercise

Towards Intelligent Authentication

Guiding Questions

- How can your approach reduce the time required for authentication?
- How can your approach reduce interruption costs?
- How well does your approach protect against different types of user-centred attacks?
- How easy is your approach to implement?

Task: 5 minutes | teams of 3 Discuss, how context information could be used to (a) enhance current

authentication mechanisms or to (b) build a new authentication mechanism?

Usable Security Origins

- Three seminal papers are seen as the origin of Usable Security and Privacy research:
 - 1996 Zurko and Simon's: "User-Centered Security"
 - 1999 Adams and Sasse's: "Users Are Not the Enemy"
 - 1999 Whitten and Tygar's "Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0"
 - USENIX Security Test of Time Award 2015
- All argued that users should not be seen as the problem to be dealt with, but that **security experts need** to communicate more with users, and adopt user-centered design approaches.

User-Centered Security: Stepping Up to the Grand Challenge

Mary Ellen Zurko IBM Software Group mzurko@ibm.us.com

Abstract

User-centered security has been identified as a grand challenge in information security and assurance. t is on the brink of becoming an established subdomain of both security and human/computer interface (HCI) research, and an influence on the product development lifecycle. Both security and HCI rely on the reality of interactions with users to prove the utility and validity of their work.

As practitioners and researchers in those areas, we still face major issues when applying even the most foundational tools used in either of these fields across both of them. This essay discusses the systemic oadblocks at the social, technical, and pragmatic levels that user-centered security must overcome to make substantial breakthroughs. Expert evaluation and user testing are producing effective usable security today. Principles such as safe staging, enumerating usability failure risks, integrated security, transparent security and reliance on trustworthy authorities can also form the basis of improved systems.

1. The Problem of User-Centered Security

The importance and challenge of the relationship between human users and security mechanisms has been recognized since the dawn of time in the systems security field. Saltzer and Schroeder [43] defined the principle of psychological acceptability in their seminal 1975 paper on the protection of information in omputer systems.

"It is essential that the human interface be designed for ease of use, so that users routinely and automatically apply the protection mechanisms correctly. Also, to the extent that the user's mental image of his protection goals matches the mechanisms he must use, mistakes will be ninimized. If he must translate his image of his protection needs into a radically different specification language, he will make errors.

The mode of interaction with security mechanisms was users applying them consciously and directly as standalone tools in a context they understood. The challenge was to make the security model of the tools consistent with the user's mental model of security, so that undesirable errors would be minimized.

By 1996, humans' relationships to computers had changed dramatically. The World Wide Web, invented in 1989, was popularized with a GUI in 1992, and began its steady rise to ubiquity. The more diverse, distributed, and popular uses of the web, the network, and computers became, the more obvious it became that problems with the usability of existing security mechanisms would compromise their effectiveness Simon and I [58] defined the term user-centered security to refer to "security models, mechanisms, systems, and software that have usability as a primary motivation or goal." We foresaw the following three categories of solutions: (1) applying human-computer interaction (HCI) design and testing techniques to secure systems, (2) providing security mechanisms and models for human collaboration software, and (3) designing security features directly desired by users for their immediate and obvious assurances (for example, signatures). Security researchers pursued the usability in some of the most important and intractable areas including trust models, encryption and signing, and authentication. HCI researchers began to attack the same problems. Sometimes these even talked to each

Two years ago, in November 2003, Computing Research Association held a conference on "Grand Challenges in Information Security & Assurance" [10]. One of the four resulting grand challenges was:

"Give end-users security controls they can understand and privacy they can control for the dynamic, pervasive computing environments of the future.

In the 28 years since psychological acceptability was defined, the problem has increased in urgency.

While there has been substantial work in usable security in the last nine years, the CRA's grand challenge indicates that the problem is not only

References

- (CHI '17). ACM, New York, NY, USA, 3751-3763.
- Berkeley, CA, USA, 1-7.
- Systems (pp. 987-996).
- Computing Systems (CHI '17). ACM, New York, NY, USA, 4254-4265.
- Prentice Hall, page 237, 2002.
- Jakob Nielsen. Security and Human Factors. https://www.nngroup.com/articles/security-and-human-factors/
- systems. interactions 24, 5 (September - October 2017), 40-45. DOI:https://doi.org/10.1145/3121357
- Whitten, Alma, and J. Doug Tygar. "Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0." USENIX Security Symposium. Vol. 348. 1999.
- paradigms. 1996.

Intelligent Usable Security

Yomna Abdelrahman, Mohamed Khamis, Stefan Schneegass, and Florian Alt. 2017. Stay Cool! Understanding Thermal Attacks on Mobile-based User Authentication. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.

Adams, Anne, and Martina Angela Sasse. "Users are not the enemy." Communications of the ACM 42.12 (1999): 40-46. Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith. 2010. Smudge attacks on smartphone touch screens. In Proceedings of the 4th USENIX conference on Offensive technologies (WOOT'10). USENIX Association,

De Luca, A., Hang, A., Brudy, F., Lindner, C., & Hussmann, H. (2012, May). Touch me once and i know it's you! implicit authentication based on touch screen patterns. In proceedings of the SIGCHI Conference on Human Factors in Computing

Malin Eiband, Mohamed Khamis, Emanuel von Zezschwitz, Heinrich Hussmann, and Florian Alt. 2017. Understanding Shoulder Surfing in the Wild: Stories from Users and Observers. In Proceedings of the 2017 CHI Conference on Human Factors in

C. Kaufman, R. Perlman, and M. Speciner. Network Security: PRIVATE Communication in a PUBLIC World. 2nd edition.

Albrecht Schmidt and Thomas Herrmann. 2017. Intervention user interfaces: a new interaction paradigm for automated

Zurko, Mary Ellen, and Richard T. Simon. "User-centered security." Proceedings of the 1996 workshop on New security

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 (CC BY-SA) license: https://creativecommons.org/licenses/by-sa/4.0 Attribution: Florian Alt

